Data Analysis for Researchers 2021
2022-11-30
About
This is a lecture note of a course jointly taught in the Winter term AY2021.
First we start with the contents of the slides and gradually include other contents into this book.
Course Contents
- Introduction:
- About the Course
- Data Science
- Data: Big Data, Public Data, etc.
- R, RStudio, [RStudio Cloud]
- [A] Self-introduction, etc. - Exploratory Data Analysis (EDA) 1
- R Basics with RStudio and/or RStudio.cloud; R Script
- [P]swirl
- [A] Quiz on Moodle - Exploratory Data Analysis (EDA) 2
- R Markdown; R Notebook
- Data Visualization
- Package:tidyverse
: Introduction toggplot2
, Explore, I
- Data:datasets
- [P] RStudio Primers: Programming Basics, Visualization Basics
- [A] R Notebook usingdatasets
package data - Exploratory Data Analysis (EDA) 3
- Data Wrangling
- Package:tidyverse
,WDI
: Introduction totibble
,dplyr
,WDI
,WDIsearch
- Data: World Bank Data
- [P] RStudio Primers: Work with Data, Wrangle, I
- [A] WDI: submit R Notebook file witha4_ID.nb.html
- Exploratory Data Analysis (EDA) 4
- Tidy Data
- Package:tidyverse
,dplyr
: pivoting
- Data: WDI, UN data,CLASS.xlsx
, JHU Covid-19 Data
- [P] RStudio Primers: Visualize Data – Explore, II
- [A] EDA on Public Data: submit R Notebook file witha5_ID.nb.html
- Exploratory Data Analysis (EDA) 5
- Data Modeling and EDA
- Package:modelr
,HistData
- Data:datasets::cars
,datasets::iris
,HistData::GaltonFamilies
- [P] RStudio Primers: Tidy Your Data – Wrangle, II
- [A] Modeling and EDA: submit R Notebook file witha6_ID.nb.html
- Topics 1
- Inference Statistics (Regression, hypothesis testing, classification, etc.)
- Standardization, PPDAC
- Package:tidyverse
,WDI
,car
,modelsummary
- Data: GDP using WDI,
- [A] Assignment on regression analysis and PPDAC cycle - Topics 2
- Categorical Variables, Analysis of Variance (ANOVA)
- Classification, Causal Inference
- Data: NHEFS data,datasets::iris
- Topics 3: Guest Lecture
- Presentation
- Students’ Presentations
- Course Round-up
[P]: Practice, [A]: Assignment